BFTA-102 张力放大器 用户手冊 User 's Manual

The BFTA-102 Tension amplifier

DISTILLA

度、天涯海村技有限公司

前 言

首先非常感谢您购买和使用本公司张力系列产品

本张力放大器可以适配本公司所有型号的张力信号传 感器,放大器使用 Arm Cotex_m3 处理器进行快速调零和校 准。通过 OLED 屏幕可以实时显示张力信号和输出电压。信 号放大器带多路模拟信号输出和一路通讯功能,广泛应用在 纸张、薄膜、无纺布、铜箔、铝箔、钢带、橡胶、线缆等需 要张力控制器的生产制造过程。

为了方便您对本套产品的熟悉和使用,使我们的产品能更好的为您服务,我们建议您仔细阅读本说明书内容。

目录

— `,	规格参数	.4
三、	接线说明	.4
	19-20 为传感器一放大信号输出。	.4
	17-18 为传感器二放大信号输出。	.4
四、	传感器安装	5
五、	调试	.6
	1、 确保所以接线及传感器安装正确后, 接通放大器电源	.6
	2、 请按以下流程进行放大器的设置	. 6
	3、连续调整菜单	. 8
	菜单功能说明	. 9
	传感器校准示意图1	10
六、	Modbus 通讯1	11

一、规格参数

电源电压	DC 24V ±10%
环境	0-50℃ 无水滴,无可燃气体,无腐蚀性气体,少尘土环
	境
输入信号	0-20mv (传感器一接线端23-27、传感器二接线端28-32)
输出信号	0-10V (传感器合力放大输出端 2122, 传感器一放大输
	出端 19-20,传感器二放大输出端 17-18)。

二、面板

三、接线说明

放大器信号输出端口		
12	空	
13	空	
14	空	
15	空	
16	空	
17	GND	
18	OUT_2	
19	GND	
20	OUT_1	
21	GND	
22	OUT	

电源端口			
1			
2			
3	+24VDC		
4	GND		
5			
6			
7	RS-485A		
8	RS-485B		
9			
10			
11			

注意: 21-22 为传感器一和传感器二的合力输出(传感器 1+传感器 2 的平均值)。
19-20 为传感器一放大信号输出。
17-18 为传感器二放大信号输出。

请根据需求将适合的信号接入 PLC 的信号采集端。 电源端口 3 脚为直流 24V 正输入, 4 脚为直流 GND 输入,允许电源误差范围 ±10%, 切勿将电源接反,否则可能会导致设备故障。 24V 开关电源到放大器的电源线不要过长(最好小于 1 米),过长的电源线会导致信号干 扰,影响放大的检测精度,甚至不能正常工作。

使用两只传感器接线示意图

使用一只传感器接线示意图

注意:如果校准的时候提示信号反,请将传感器信号输入端口的 26 和 27 信号线互换 (31

和 32 信号线互换)

<u>如果只使用一只张力传感器时候,用导线将信号一负和信号二负短接,将信号一正和</u> <u>信号二正短接</u>。

四、传感器安装

穿轴式张力传感器受力方向

注意: 张力传感器在任何时侯不能受到强烈的撞击或震动, 否则将导致张力传感器的损坏。

五、调试

1、确保所以接线及传感器安装正确后,接通放大器电源。

第一步: 放大器在主界面的时候, 按下 "OK" 键.进入参数监视页面。

第二步:用力按压张力检测棍,传感器1和传感器2的数字会变大,说明传感器信号及接线正确。 *如果数字变小,则传感器信号正及负需要调换。如数字没变化,这接线或者传感器安装有问题。

★如果检测棍空载时,若安装好导辊后,导辊上面没有施加压力,左或右传感器信号值超过 2500 以上, 表明传感器量程不够,应更换更大量程范围的张力传感器,或减轻导棍重量。

第三步:检查完成后,连续按 "OK"键 3次,返回到主界面。

2、请按以下流程进行放大器的设置

第一步: 放大器在主界面时候, 按下"SET"键。

第三步: 按 "SET"键将菜单调到传感器 1 去皮

+	
数码密码 1 2 3 0	按順序设置完 成即可正常使用
set ок	set ок

第二步: 在密码输入界面, 按 "+" 键, 输入密码. 密码: 1234。

	+		+
传感器1去皮		传感器1去皮	
**** 正在去皮	-	设置完成. 按[OK] 继续	-
SET ОК		SET ОК	

第四步骤:按 "OK"键,开始执行去皮功能然后等

界面,然后移开检测棍上的材料,让检测棍处 于空置状态。 待去皮完成。

第五步:按 "OK" 键将菜单调到传感器 2 去皮 等界面,然后移开检测棍上的材料,让检测棍 处于空置状态。

第七步:按 "OK"键将菜单调到传感器1量程 界面,然后按[+]或[-]将参数调到所使用传感器 的量程一致。

第九步:按 "OK"键将菜单调到传感器1砝码 界面,然后按[+]或[-]将参数调到校准时使用的 砝码重量一致。

第六步骤:按 "OK"键,开始执行去皮功能然后, 待去皮完成。

第八步:按 "OK"键将菜单调到传感器 1 量程 界面,然后按[+]或[-]将参数调到所使用传感器 的量程一致。

第十步:按 "OK"键将菜单调到传感器1砝码 界面,然后按[+]或[-]将参数调到校准时使用的 砝码重量一致。

+ 传感器1校准 **** 正在校准... SET OK

第十一步:按 "OK"键,将菜单调到传感器 1 校 准界面,然后用绳子绑好砝码并按材料路径将砝 码重量施加到检测棍上。

第十三步: **连续**按 "OK" 键,将菜单调到 面

输出电压界面,使用[+]或[-]键选择放大器 满量程的输出电压。 第十二步:按 "**OK**"键,开始执行校准功能,然 后等待校准完成。

第十四步:按 "OK"键,将菜单调到通道一修正界

用[+]或[-]键 微调参数, 使屏幕是的重量数字和校准 时候砝码的重量一致。 (差异不大时可忽略本步骤)

	+
通道二修正 25.0 Kg 按[+][-]调整	-
SET OK	

第十六步: 连续按"OK"键,将菜单调到<返回>界

第十五步:按 "OK"键,将菜单调到 面

通道一修正界面,用[+]或[-]键微调参数,

使重量数字和校准时候砝码的重量一致。

然后按 "OK" 键退出设置菜单,并返回到主界面。

(差异不大时可忽略本步骤)

3、连续调整菜单

在实际使用过程中需要调整菜单中其中一个参数的时候,可以按以下操作即可调整到任何一个一菜单。

在设置菜单的任何界面,按 "SET"键,即可将菜单调整到下一个菜单。最后将菜单调到 返回界面,按 OK"

键,即可返回主界面。

菜单功能说明

序号	菜单	功能	备注
1	输入密码	密码页面,用于防止误操作导致数据调乱引起异常	
2	语言类型	菜单显示中文或英文	
3	传感器1去皮	张力检测棍没有张力 (重量) 的初始状信号设置	
		去皮时,拿开张力棍上材料。并不要触碰张力检测棍。	
4	传感器2去皮		
5	传感器1量程	传感器1的量程,具体查看传感器标签上的数据设定	
6	传感器2量程	传感器 2 的量程,具体查看传感器标签上的数据设定	
7	传感器1砝码	校准传感器1时候,使用的砝码重量	
8	传感器2砝码	校准传感器2时候,使用的砝码重量	
9	传感器1校准	按材料走料路径,将砝码产生的重力施加到张力检测棍	参考校准示意图
		上,然后按 OK 键。	
10	传感器1校准	按材料走料路径,将砝码产生的重力施加到张力检测棍	参考校准示意图
		上, 然后按 OK 键。	
11	小数点位	放大器屏幕显示重量时候,小数点的位数	
12	滤波时间	放大器检测到信号时的滤波时间,用于平滑输出的张力	时间越大输出越
		信号。	平滑, 输出响应
			变慢
13	波特率	485 通讯时候的波特率	
14	本机地址	485 通讯时候的 站号设定	
15	奇偶校验	485 通讯时候的 校验位设定	
16	输出电压	满量程时的输出电压:0-5V和 0-10V 可选。	
17	通道一修正		
18	通道二修正	用于修正, 校准后机器上显示的重量误差, 按 "-"调	
		大输出, 按"+"减小输出	
19	滤波次数	放大器检测到信号时的滤波次数,用于平滑输出的张力	次数越大输出越
		信号。	平滑, 输出响应
			变慢
20	显示滤波	放大器显示屏上所显示数据的滤波次数	-

六、Modbus 通讯

BFTA102 支持 Modbus RTU 格式通讯, 仅支持 03 读保持寄存器功能。

站号	1-128	(默认【1】	,可通过放大器设置菜单调整)	
波特率	4800-23040	00(默认【4800】	,可通过放大器设置菜单调整)	
数据位	8位			
奇偶校验证	无,奇,偶	」 (默认【无】	,可通过放大器设置菜单调整)	
停止位	1位			
寄存器地址				
张力精度为克	(g)			
地址	信息			
0x01	传感	器1张力 数据高	16 位	
0x02	传感	器1张力 数据低	16 位	
0x03	传感	传感器2张力 数据高16位		
0x04	传感	传感器 2 张力 数据低 16 位		
0x05	传感	传感器 1、2 合力数据高 16 位		
Ox06 传感器 1、2 合力数据低 16 位			氐 16 位	
主机发生报文	格式【十六	进制】: 01 03 00	01 00 02 95 CB	
主机发送	字节数	发送信息	备注	
从机站号	1	01	发送从机站号为 01	
功能码	1	03	读保持寄存器	
寄存器地址	2	0001	寄存器地址为 0001	
读寄存器数量	2	0002	读寄存器数量	
CRC 校验值	2	95CB	由主机计算得到的 CRC 值	
从机返回报文格式【十六进制】: 01 03 04 00 00 04 D2 78 AE				
从机发送	字节数	发送信息	备注	
从机站号	1	01	返回站号为 01	
功能码	1	03	保持寄存器	
数据长度	1	04	数据长度 4 个字节	
数据	4	00 00 04 D2	返回的数据	
CRC 校验值	2	78AE	由从机计算得到的 CRC 值	

注: 返回的数据 000004D2 对应的十进制为 1234, 当前张力为 1234g。

说明书版本 v1.4

重庆编福科技有限公司

地址: 重庆市江北区港桥支路 12 号聚峰国际 (B 栋 3 楼)

电话: 023-63998883

传真: 023-63307779